
➔ Front-end webpage:
◆ Allows users to login, select

items to checkout, and
open/close the locker.

◆ Includes admin page for ETG
staff to monitor checkout
history.

◆ Displays a confirmation page
and sends user a confirmation
email.

➔ Database:
◆ Stores all user data needed for

the application.
➔ Raspberry Pi:

◆ Runs a server to connect the
front-end and database.

◆ Operates the locker hardware as
needed to checkout items.

➔ Security:
◆ Authenticate users via netID to

ensure only ECpE students can
use the locker

◆ User input is sanitized to prevent
SQL injections

◆ Error handling to prevent data
leaks and application crashes

➔ Project Management
◆ We used a hybrid waterfall +

agile project management
approach

◆ Adopting this approach allowed
us to balance the dependencies
between the front and backend

◆ This resulted in additional
flexibility when making changes

Laura Mejía, Ben Johnson, Camille Cramer, Ainara Machargo del Rio, and Jon González

SMALL EQUIPMENT CHECKOUT LOCKER
SOFTWARE

SD-DEC23-03 Faculty Advisor/Client: Matthew Post

➔ The project uses industry-standard
tools, including a
Javascript/HTML/CSS front end,
Flask API backend, and a MariaDB
database on a Raspberry Pi.

➔ The Flask API leverages several
python libraries, including
SQLAlchemy to communicate with
the database, Marshmallow to
serialize data, and the ETG
provided locker control software to
manage the locker hardware

TECHNICAL DETAILS

O

OVERVIEW

Problem
ETG is not open 24/7 but students are
often times working on projects after

ETG is already closed for the day.

Solution
A system of lockers with rental

equipment available all hours for
short term rental capabilities.

Use case
Students: will be able to check out
small equipment from GUI after hours
ETG Staff: will be able to provide
students even more support, also will
be able to maintain lockers through an
admin page.

TESTING

➔ Frontend:
◆ Checking look and feel on

various web services.
◆ Ensuring user interface is

responsive and intuitive.
◆ Testing for visual consistency

and ease of navigation.
➔ Backend:

◆ Ensuring data integrity and
efficient performance.

◆ Evaluating the Flask API and
MariaDB database for smooth
interaction.

RESULTS & IMPACT

➔ Results:
◆ Front-end is user-friendly,

enabling students to easily
check out equipment from the
GUI after hours.

◆ Consistent display and high
responsiveness enhance user
experience.

◆ Back-end, with Flask API and
MariaDB, ensures reliable
performance, even during peak
usage by students.

➔ Impact:
◆ Facilitates after-hours

equipment checkout for
students, increasing
accessibility.

◆ Empowers ETG staff to provide
enhanced support and
efficiently manage equipment.

◆ Admin page functionality allows
staff to maintain and monitor
lockers effectively.

CONCLUSION

➔ Integration and Access:
◆ Efficiently merged technology

with user needs.
◆ Simplified student access to

after-hours equipment.
➔ Staff Empowerment:

◆ Enhanced ETG staff's
management capabilities.

➔ Future Outlook:
◆ Complete the implementation of

the admin page by integrating
proper authentication into the
login page and updating the
users page accordingly.

Fun

DESIGN REQUIREMENTS

Functional Requirements:
➔ Self-service touchscreen.
➔ Automatic locker opening.
➔ Functional Admin site.

UI Requirements:

➔ User friendly interface:
◆ Clear instructions and visuals.

➔ Reservation website:
◆ Uniform ISU HTML template.
◆ ISU credentials login.

➔ Admin site:
◆ Easy navigation and equipment

management.
◆ Accessible rental information.

➔ Student Experience:
◆ Spinner for component selection.
◆ Duration of rental specification.

Database Requirements:
➔ Hosted on a Raspberry Pi.
➔ Log equipment checkout and

return information.

Figure 1: Admin Page.

Figure 2: GUI Home Page

DESIGN APPROACH

